Abstract

We describe the development and application of an improved, membrane-based, liquid–liquid separator. Membrane-based separation relies on the exploitation of surface forces and the use of a membrane wetted by one of the phases; however, successful separation requires accurate control of pressures, making the operation and implementation cumbersome. Here we present an improved separator design that integrates a pressure control element to ensure that adequate operating conditions are always maintained. Additionally, the integrated pressure control decouples the separator from downstream unit operations. A detailed examination of the controlling physical equations shows how to design the device to allow operation across a wide range of conditions. Easy to implement, multistage separations such as solvent swaps and countercurrent extractions are demonstrated. The presented design significantly simplifies applications ranging from multistep synthesis to complex multistage separations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.