Abstract

Considering size effect on the equations obtained from statistical mechanical theories for the entropy of crystal and liquid phases, a new model has been developed for the melting entropy of nanocrystals, including the effects of the quasi-harmonic, anharmonic and electronic components of the overall melting entropy. Then with the use of our suggested new proportionality between the melting point and the entropy temperature (θ(0)), the melting entropy of nanocrystals has been obtained in terms of their melting point. Moreover, for the first time, the size-dependency of the electronic component of the overall melting entropy, arising from the change in the electronic ground-state of the nanocrystal upon melting, has been taken into account to calculate the melting entropy of nanocrystals. Through neglecting the effect of the electronic component, the present model can corroborate the previous model for size-dependent melting entropy of crystals represented by Jiang and Shi. The present model has been validated by the available computer simulation results for Ag and V nanoparticles. Moreover, a fairly constant function has been introduced which couples the melting temperature, the entropy temperature and the atomic density of elements to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.