Abstract

Mixtures of Ge–Sn and Ge–Pb powders were ball-milled to form a fine dispersion. After 32 h of milling the average diameter of the hard Ge particles embedded in the Sn (or Pb) matrix was about 10 nm. As the Ge concentration was increased in each system, the melting point,TM, and the enthalpy of fusion, ΔHM, of Sn (or Pb) decreased. Only small changes in ΔTMand ΔHMwere observed after heating cycles in the DSC to above the melting point. The melting endotherm measured by DSC disappeared for Ge-rich compositions (88 and 95 vol.% Ge for Ge–Sn; 93.5 vol.% Ge for Ge–Pb). It is suggested that atomic disorder/melting is nucleated at the Ge/Sn (or Ge/Pb) interfaces and the melting point and enthalpy of fusion decrease as the interfacial area increases. When the Ge volume reaches a value where essentially all the Sn (or Pb) atoms are adjacent to the Ge particle surfaces, the Sn is in a disordered–perhaps amorphous–state such that no melting transition is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.