Abstract

Melting and chemical behaviors of isothermally crystallized gamma-irradiated sPS have been investigated using differential scanning calorimetry, FTIR, and X-ray diffraction techniques. Amorphous sPS samples were subjected to gamma radiation in vacuum and in oxygen at different doses from 200 to 1000kGy. Irradiated samples were heated to 310°C, cooled to 220–260°C range, held for 10min, and re-melted. Three melting endothermic peaks observed for irradiated and non-irradiated samples isothermally crystallized at 220°C were decomposed into individual Gaussian distributions, and enthalpies of the total melting endotherm and individual peaks were determined. Both α and β crystalline forms coexist in the crystallized irradiated sPS, regardless of the radiation treatment environment. Dose and irradiation environment have a great effect on the melting behaviors and chemical structures of the isothermally crystallized gamma-irradiated sPS. Crystallinity increases with increasing dose of irradiation in both vacuum and oxygen, with level of increase is greater in oxygen. The three melting peak temperatures decrease with increasing dose regardless of irradiation environments. Ketone and aldehyde oxidized products are formed in the isothermally crystallized gamma-irradiated sPS in oxygen through a combination of hydrogen abstraction or chain scission process and hydroxyl free radicals formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.