Abstract

Composite fibers from poly(lactic acid) (PLA) and hydroxyapatite (HA) particles were prepared using melt spinning. Different loading concentrations of HA particles (i.e., 5, 10, 15, and 20 wt %) in the PLA fibers and solid-state draw ratios (SSDRs) were evaluated in order to investigate their influence on the fibers' morphology and thermal and mechanical properties. A scanning electron microscopy investigation indicated that the HA particles were homogeneously distributed in the PLA fibers. It was also revealed by atomic force microscopy and Fourier transform infrared spectroscopy that HA particles were located on the fiber surface, which is of importance for their intended application in biomedical textiles. Our results also suggest that the mechanical properties were independent of the loading concentration of the HA particles and that the SSDR played an important role in improving the mechanical properties of the composite fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.