Abstract

BackgroundThere is no consensus in the literature about the ideal classification of the distal radius fracture for the clinical practice. The traditional Melone classification system divides the distal radius into four basic components, the shaft, radial styloid, dorsal medial fragment, and volar medial fragment. The aim of this study was to identify fracture lines in comminuted distal radius fractures using three-dimensional mapping of computed tomography (CT) images to test the hypothesis that fracture fragments can be divided according to the Melone classification.MethodsFifty-nine consecutive OTA/AO 23C3 fractures presented at the hospital between January 2018 and October 2019 were retrospectively reviewed. The fracture lines were characterized in the axial, sagittal, and coronal CT planes. After reducing the fractures in a three-dimensional (3D) model, the fracture lines were plotted from the CT images and were then superimposed on one another and oriented to fit a standard template. The area of articular surfaces was measured and compared to quantify the differences between the radial bone fragments.ResultsThirty-five cases (59.3%) in this study fit the Melone classification and 24 cases (40.7%) did not. On the radiocarpal surface, there was a greater concentration of fracture lines in the dorsal area of the radius than in the volar area. On the distal radioulnar joint (DRUJ), the fracture lines were focused around two specific concentrated regions. For the articular surface area, the mean area of the radial styloid, volar medial fragment, and dorsal medial fragment was 141.13 ± 90.16 mm2, 147.79 ± 75.94 mm2, and 79.05 ± 70.73 mm2, respectively. There was a significant difference in articular surface area for the Melone fragments (P = 0.002).ConclusionsThe Melone classification system is not suitable for characterizing all C3 fractures. The findings of this study confirm that the dorsal medial fragments are relatively comminuted and small. Extra care should be given to these small fragments when reducing the fracture.

Highlights

  • Half of all Distal radius fracture (DRF) occur across the articular surface, and the majority of these are complete articular fractures (Orthopaedic Trauma Association/Arbeitsgemeinschaftfür Osteosynthesefragen classification type C, AO/OTA type C) [3]

  • The aim of this study is to use fracture mapping on distal radius fractures of AO/OTA type 23C3 and test the null hypothesis that fracture fragments can be divided according to Melone’s classification [5].Given the limited information available on the anatomical patterns of articular comminution in C3 fractures, this study aimed to introduce heat mapping of fracture lines to evaluate the morphology of comminuted distal radius fractures

  • Fracture fragment articular surface area If the displacement between two fracture fragments was less than 1 mm, this was not regarded as a fracture in this study and the particular bone section was considered intact

Read more

Summary

Introduction

There is no consensus in the literature about the ideal classification of the distal radius fracture for the clinical practice. Half of all DRFs occur across the articular surface, and the majority of these are complete articular fractures (Orthopaedic Trauma Association/Arbeitsgemeinschaftfür Osteosynthesefragen classification type C, AO/OTA type C) [3]. Of these intra-articular fractures, a C3 fracture is the most complex, indicating extensive injury to the surfaces of the radiocarpal joint and distal radioulnar joint (DRUJ) [4]. In 1984, Melone et al developed a classification system for fractures of the distal radius, noting that such fractures are frequently bi-articular injuries and are comprised four basic components: radial shaft, radial styloid, the dorsal medial fragment, and volar medial fragment [5]. The other classifications such as Frykman classification and Fernandez classification do not suffice for individual communication-related use in daily practice [6]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.