Abstract

Stem cell expansion in vitro and transplantation in the cytokine-rich proinflammatory milieu in the injured tissue generate immense oxidative stress that interferes with the cells’ survival, stemness, and repairability. Stem cell priming has gained popularity to overcome these issues. Given melatonin’s oxidative-scavenging properties, Gu et al have used periodontal ligament stem cells cultured under oxidative stress as an in vitro model to study the cytoprotective effects of melatonin. Our letter to the editor delves into melatonin-induced stem cell priming and the underlying molecular mechanism, focusing on the intriguing role of Yes-associated protein signaling in alleviating oxidative stress. We stress the importance of understanding the distinction between in vitro and in vivo oxidative stress conditions, a crucial aspect of stem cell research that invokes a sense of critical thinking in the readership. The study by Gu et al presents a novel approach to oxidative stress management, offering exciting possibilities for future research and applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.