Abstract

Laccase activity in plants results in the formation of a number of brown pigments, often referred to as tannins. Laccase-dependent pigment production is also catalogued in numerous fungal and bacterial species. The laccase of the haploid yeast Cryptococcus neoformans forms melanin-like pigmentation outside the cell wall in the presence of exogenous substrates. While this process is a contributing factor to its virulence in humans, the evolutionary intent for the laccase function remains a mystery. We show here that C. neoformans and Bacillus subtilis have the ability to create melanin-like pigments from a variety of flavonoid molecules across a range of conformations, preferring those with 3',4'-dihydroxylations. Since flavonoids are ubiquitous plant molecules and often-considered antimicrobial agents, we postulate that they are the intended natural targets of laccase activity and result in the formation of a defensive melanin-like coat. These results suggests a new mechanism by which flavonoid-melanin formation may occur, using not only A- and C-ring linkages, but also monomer links through the B-ring of the flavonoid structure. We also show that resveratrol and other non- and mono-hydroxylated polyphenol substrates have the ability to restrict pigment formation and may be potent inhibitors of laccase activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.