Abstract

Lithium, a drug used for the treatment of bipolar disorder, has been shown to affect different aspects of neuronal development such as neuritogenesis, neurogenesis and survival. The underlying mechanism responsible for lithium's influence on neuronal development, however, still remains to be elucidated. In the present study, we demonstrate that lithium increases the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt) and promotes neurite outgrowth in mouse N2a neuroblastoma cells (N2a). The inactivation of mitogen-activated protein kinase kinase (MEK)/ERKs signaling with a MEK inhibitor inhibits neurite outgrowth, but it enhances Akt activation in lithium-treated N2a cells. Furthermore, the inactivation of phosphoinositide-3-kinase (PI3K)/Akt signaling with a PI3K inhibitor increases both lithium-induced ERKs activation and lithium-induced neurite outgrowth. Taken together, our study suggests that lithium-induced neurite outgrowth in N2a cells is regulated by cross-talk between the MEK/ERKs and PI3K/Akt pathways and requires the activation of the MEK/ERKs signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.