Abstract

The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes ( col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.