Abstract

Kinesin superfamily proteins (KIFs) act as molecular motors and are involved in material transport along microtubules to maintain normal cellular functions. KIF11 (also named kinesin-5, Eg5, and KSP) is a plus-end-directed homotetrameric kinesin that regulates spindle formation for actuate chromosomal separation during mitosis. However, the roles of KIF11 in meiosis are still unclear. In this study, we investigated the regulatory functions of KIF11 during porcine oocyte maturation. The results indicated that KIF11 was expressed in different stages during porcine oocyte meiosis. Inhibition of KIF11 activity led to the failure of the first polar body extrusion, and we found that cell cycle progression was disturbed, which was confirmed by the decreased Cdc2 expression. Furthermore, inhibition of KIF11 resulted in decreased tubulin acetylation and caused sequential disruption of the spindle assembly and chromosome alignment. We also found that in postovulatory aging porcine oocytes, the KIF11 expression was altered, indicating that KIF11 was involved with aging-induced spindle disorganization. In summary, our results showed that KIF11 regulated the cell cycle and tubulin acetylation related spindle formation in porcine oocyte meiosis. Environ. Mol. Mutagen. 59:805-812, 2018. © 2018 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.