Abstract

Fish eyes require high Zn levels to support their early development. Although numerous studies have been conducted on the nutritional and toxic effects of Zn on the eye, the Zn requirement for retinal cell development is still debatable. Moreover, due to the complexity of the retinal structure, it is difficult to clearly visualize each retinal layer and accurately separate cell morphology in vivo by conventional methods. In the present study, we for the first time have achieved nanoscale imaging of retinal anatomy affected by dietary and waterborne Zn exposure by novel expansion microscopy. We demonstrated that the fish retina showed different developmental strategies in response to dietary and aqueous Zn exposures. Excess dietary Zn produced toxicity to retinal photoreceptor cells, resulting in a reduction in cell number and cell area, and this toxicity became severe with biological development. In contrast, waterborne Zn in the natural environment probably failed to meet the Zn requirements of retinal development. Overall, our results indicated that during early development, the Zn requirement of the fish eyes was sensitive, and oversupplementation led to impaired photoreceptor cell development. Our study has provided new perspectives using the powerful and novel expansion microscopy technique in toxicity assessment, enabling ultra-clear visualization of small but complex organ development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.