Abstract

The medium-energy particle experiments—electron analyzer onboard the exploration of energization and radiation in geospace spacecraft measures the energy and direction of each incoming electron in the energy range of 7–87 keV. The sensor covers a 2π-radian disklike field of view with 16 detectors, and the full solid angle coverage is achieved through the spacecraft’s spin motion. The electron energy is independently measured by both an electrostatic analyzer and avalanche photodiodes, enabling significant background reduction. We describe the technical approach, data output, and examples of initial observations.

Highlights

  • The exploration of energization and radiation in geospace (ERG) project is designed to explore the Earth’s radiation belt region, where relativistic-energy electrons, with energy of the order of MeV, are generated from considerably lower-energy source populations, such as solar wind electrons with energy of hundreds of eV and electrons from ionospheric sources with sub-eV energy (Miyoshi et al 2017)

  • The ERG spacecraft was launched from the Uchinoura space center in Kagoshima, Japan, at 11:00 UTC on December 20, 2016, and thereafter was nicknamed “Arase,” after a wild river near the launch site

  • For the measurements of medium-energy electrons onboard the ERG, we designed an electron sensor consist of a cusp-type electrostatic analyzer and avalanche photodiodes (APDs)

Read more

Summary

Introduction

The exploration of energization and radiation in geospace (ERG) project is designed to explore the Earth’s radiation belt region, where relativistic-energy electrons, with energy of the order of MeV, are generated from considerably lower-energy source populations, such as solar wind electrons with energy of hundreds of eV and electrons from ionospheric sources with sub-eV energy (Miyoshi et al 2017). For the measurements of medium-energy electrons onboard the ERG, we designed an electron sensor consist of a cusp-type electrostatic analyzer and APDs. The ESA determines the energy of an incoming electron, while rejecting ions and photons.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.