Abstract

BackgroundTo increase the removal of middle-sized uremic toxins a new membrane with enhanced permeability and selectivity, called Medium Cut-Off membrane (MCO-Ci) has been developed that at the same time ensures the retention of albumin. Because many middle-sized substances may contribute to micro-inflammation we hypothesized that the use of MCO-Ci influences the inflammatory state in hemodialysis patients.MethodsThe randomized crossover trial in 48 patients compared MCO-Ci dialysis to High-flux dialysis of 4 weeks duration each plus 8 weeks extension phase. Primary endpoint was the gene expression of TNF-α and IL-6 in peripheral blood mononuclear cells (PBMCs), secondary endpoints were plasma levels of specified inflammatory mediators and cytokines.ResultsAfter four weeks of MCO-Ci the expression of TNF-α mRNA (Relative quantification (RQ) from 0.92 ± 0.34 to 0.75 ± 0.31, -18.5%, p<0.001)-α and IL-6 mRNA (RQ from 0.78 ± 0.80 to 0.60 ± 0.43, -23.1%, p<0.01) was reduced to a significantly greater extent than with High-flux dialyzers (TNF mRNA-RQ: -14.3%; IL-6 mRNA-RQ: -3.5%). After retransformation of logarithmically transformed data, measurements after MCO were reduced to 82% of those after HF (95% CI 74%–91%). 4 weeks use of MCO-Ci resulted in long-lasting change in plasma levels of several cytokines and other substances with a significant decrease for sTNFR1, kappa and lambda free light chains, urea and an increase for Lp-PLA2 (PLA2G7) compared to High-flux. Albumin levels dropped significantly after 4 weeks of MCO dialysis but increased after additional 8 weeks of MCO dialysis. Twelve weeks treatment with MCO-Ci was well tolerated regarding the number of (S)AEs. In the extension period levels of CRP, TNF-α-mRNA and IL-6 mRNA remained stable in High-flux as well as in MCO-Ci.ConclusionsMCO-Ci dialyzers modulate inflammation in chronic HD patients to a greater extent compared to High-flux dialyzers. Transcription of pro-inflammatory cytokines in peripheral leukocytes is markedly reduced and removal of soluble mediators is enhanced with MCO dialysis. Serum albumin concentrations stabilize after an initial drop. These results encourage further trials with longer treatment periods and clinical endpoints.

Highlights

  • The uremic syndrome is characterized by retention of a large number of solutes that are normally eliminated by the kidney [1, 2]

  • After retransformation of logarithmically transformed data, measurements after MCO were reduced to 82% of those after HF. 4 weeks use of MCO-Ci resulted in long-lasting change in plasma levels of several cytokines and other substances with a significant decrease for sTNFR1, kappa and lambda free light chains, urea and an increase for Lp-phospholipase A2 (PLA2) (PLA2G7) compared to High-flux

  • Transcription of pro-inflammatory cytokines in peripheral leukocytes is markedly reduced and removal of soluble mediators is enhanced with MCO dialysis

Read more

Summary

Introduction

The uremic syndrome is characterized by retention of a large number of solutes that are normally eliminated by the kidney [1, 2] Many of these uremic toxins are not cleared by standard extracorporeal treatments, either because they are protein-bound or because their molecular weight exceeds the pore size of the membrane used. Hemodiafiltration (HDF) in post-dilution mode provides even more efficient removal of uremic retention solutes compared to High-flux [6]; the debate on improvements of clinical endpoints by HDF is still ongoing: three recent prospective randomized studies gave conflicting results regarding the benefit of HDF on mortality [7],[8, 9]. Because many middle-sized substances may contribute to micro-inflammation we hypothesized that the use of MCO-Ci influences the inflammatory state in hemodialysis patients

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.