Abstract
Background Rotator cuff repair retear rates range from 25% to 90%, necessitating methods to improve repair strength. Although numerous laboratory studies have compared single-row with double-row fixation properties, little is known regarding regional (ie, medial vs lateral) suture retention properties in intact and torn tendons. Hypothesis A torn supraspinatus tendon will have reduced suture retention properties on the lateral aspect of the tendon compared with the more medial musculotendinous junction. Study Design Controlled laboratory study. Methods Human supraspinatus tendons (torn and intact) were randomly assigned for suture retention mechanical testing, ultrastructural collagen fibril analysis, or histologic testing after suture pullout testing. For biomechanical evaluation, sutures were placed either at the musculotendinous junction (medial) or 10 mm from the free margin (lateral), and tendons were elongated to failure. Collagen fibril assessments were performed using transmission electron microscopy. Results Intact tendons showed no regional differences with respect to suture retention properties. In contrast, among torn tendons, the medial region exhibited significantly higher stiffness and work values relative to the lateral region. For the lateral region, work to 10-mm displacement (1592 ± 261 N-mm) and maximum load (265 ± 44 N) for intact tendons were significantly higher (P < .05) than that of torn tendons (1086 ± 388 N-mm and 177 ± 71 N, respectively). For medial suture placement, maximum load, stiffness, and work of intact and torn tendons were similar (P >. 05). Regression analyses for the intact and torn groups revealed generally low correlations between donor age and the 3 biomechanical indices. For both intact and torn tendons, the mean fibril diameter and area density were greater in the medial region relative to the lateral (P ≤. 05). In the lateral tendon, but not the medial region, torn specimens showed a significantly lower fibril area fraction (48.3% ± 3.8%) than intact specimens (56.7% ± 3.6%, P < .05). Conclusion Superior pullout resistance of medially placed sutures may provide a strain shielding effect for the lateral row after double-row repair. Larger diameter collagen fibrils as well as greater fibril area fraction in the medial supraspinatus tendon may provide greater resistance to suture migration. Clinical Relevance While clinical factors such as musculotendinous integrity warrant strong consideration for surgical decision making, the present ultrastructural and biomechanical results appear to provide a scientific rationale for double-row rotator cuff repair where sutures are placed more medially at the muscle-tendon junction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.