Abstract

This thesis develops a novel way to identify both the joint friction parameters and a built in torque sensor gain and offset. The identification method is based on a genetic algorithm (GA). A model based friction compensation method and a real coded GA are selected from a variety of methods available. A model of a single degree of freedom mechatronic joint with a link is presented. Numerical simulations are run to determine the optimum configuration of the GA with respect to the population size and maximum number of generations necessary to identify the parameters to within 5% of their actual value. The GA identification technique is then used on an experimental mechatronic joint with a harmonic drive and built-in torque sensor. The friction parameters as well as the sensor gain and offset are identified in the experimental system and the position tracking error is reduced. Based on the experimental results, the method is found to be an effective way of identifying system parameters in a mechatronic joint.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.