Abstract

Protein glycation through heating of a mixture of protein and reducing sugars is one of the most commonly used methods of protein modification; however, in most cases, this approach can lead to uncontrolled glycation. The hypothesis that mechanical energy supplied through ball milling can induce glycation of proteins was tested using a well-characterized enzyme lysozyme. The Q-TOF/MS analysis of the milled samples has indicated that the milling of sugar-protein mixtures in stainless steel jars for 30 min and at a frequency of 30 Hz generated mainly monoglycated proteins even with the highly reactive ribose. Increasing the sugar concentration or the milling time did not influence the overall yield or generate more glycoforms. Enzymatic activity measurements, FTIR, and fluorescence spectroscopic studies have indicated that milling of lysozyme alone leads to a significant loss in enzymatic activity and structural integrity in contrast to milling in the presence of sugars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.