Abstract

The mechanism of lithium dendrite penetration in solid-state electrolyte (SE) and its suppression strategies are studied based on a new phase field (PF) model involving fracture mechanics, electrodeposition processes, and mechano-electrochemical coupling (MEC) effects. Numerical results reveal the high stress-intensity factor is caused by high hydrostatic pressure in lithium, and the high stiffness of SE does not inhibit dendrite penetration. It is because the increase in Young's module of SE, ESE, makes the stress-intensity factor even more significant. That is why a stiff SE is “pierced” by the much softer lithium dendrites. Considering MEC, the increase in ESE has a competing effect on dendrite penetration causing a nonmonotonic change in dendrite length, which provides a window to mitigate dendrite penetration. Dendrite suppression by toughening SE is quantitatively evaluated. A critical fracture surface energy density of SE (γ = 3.5 J m−2) is determined. When γ > 3.5 J m−2, facture toughness becomes larger than stress-intensity factor and dendrite penetration is suppressed with ESE. However, toughening is difficult. Engineering compressive traction, Fa, in SE surfaces is a more realistic strategy, that cause a significantly inhibition in dendrite penetration with Fa from 0 to 100 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.