Abstract

We investigate the atomic structure of Sn dimer chains grown on the Si(1 0 0) surface using non-contact atomic force microscopy (NC-AFM) at cryogenic temperatures. We find that similar to the native Si(1 0 0) dimer structure, the ground state of the Sn dimer structure is buckled at low temperature. At 5 K we show that the buckling state of the Sn dimers may be controllably, and reversibly, manipulated with atomic precision by close approach of the tip, without modification of the underlying substrate buckling structure. At intermediate cryogenic temperatures we observe changes in the configuration of the dimer chains in the region where the tip-sample interaction is very weak, suggesting that the energy barrier to transit between configurations is sufficiently small to be surmounted at 78 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.