Abstract

A bifunctional photoinitiator for free radical polymerization, thioxanthone catechol-O,O′-diacetic acid, was synthesized, characterized, and compared to photoinitiator parameters of the monofunctional analogue, 2-(carboxymethoxy)thioxanthone. Photophysical studies such as fluorescence, phosphorescence, and laser flash photolysis in addition to photopolymerizations of methyl methacrylate show that the bifunctional photoinitiator is more efficient in polymer generation than the monofunctional derivative. These studies suggest that initiator radicals are generated from a π−π* triplet state in an intramolecular electron transfer, followed by proton transfer and decarboxylation to generate alkyl radicals, which initiate polymerization. The initial electron transfer is faster for the bifunctional photoinitiator than the monofunctional derivative, which is based on laser flash photolysis studies. Because of the relatively fast intramolecular radical generation from the triplet state (triplet lifetime = 490 ns), quenching by molecular oxygen is insignificant and polymerization of methyl methacrylate proceeds efficiently without deoxygenation. At higher concentrations of initiator (∼5 mM) intermolecular electron transfer competes with intramolecular electron transfer. Both processes, inter- and intramolecular processes, yield initiating alkyl radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.