Abstract
Wet granulation, a particle size enlargement process, can significantly enhance the critical quality attributes of powders and improve the ability to form tablets in pharmaceutical manufacturing. In this study, a mechanistic-based population balance model is applied to twin screw wet granulation. This model incorporated a recently developed breakage kernel specifically designed for twin screw granulation, along with nucleation, layering, and consolidation. Calibration and validation were performed on Hydrochlorothiazide and Acetaminophen formulations, which exhibit different particle size and wettability characteristics. Utilizing a compartmental experimental dataset, a comprehensive global sensitivity analysis identified critical inputs impacting quality attributes. The study revealed that the nucleation rate process model, effectively represented particle size distributions for both formulations. Adjustments to nucleation and breakage rate parameters, influenced by material properties and screw configuration, improved the model’s accuracy. A model-driven workflow was proposed, offering step-by-step guidelines and facilitating PBM model usage, providing essential details for future active pharmaceutical ingredient (API) formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.