Abstract

We previously described the development of a DNA-alkylating compound that showed selective toxicity in breast cancer cells. This compound contained an estrogen receptor α (ERα)-binding ligand and a DNA-binding/methylating component that could selectively methylate the N3-position of adenines at adenine-thymine rich regions of DNA. Herein, we describe mechanistic investigations that demonstrate that this class of compounds facilitate the translocation of the ERα-compound complex to the nucleus and induce the expression of ERα target genes. We confirm that the compounds show selective toxicity in ERα-expressing cells, induce ERα localization in the nucleus, and verify the essential role of ERα in modulating the toxicity. Minor alterations in the compound structure significantly affects the DNA binding ability, which correlates to the DNA-methylating ability. These studies demonstrate the utility of DNA-alkylating compounds to accomplish targeted inhibition of the growth of specific cancer cells; an approach that may overcome shortcomings of currently used chemotherapy agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.