Abstract

In this paper, we have attempted to get a physical insight into process of sono-enzymatic treatment for degradation of recalcitrant organic pollutants. Decolourization of an azo dye has been used as model reaction with different experimental protocols that alter characteristics of ultrasound and cavitation phenomena in the system. Experimental data is analyzed to determine kinetic and thermodynamic parameters of decolorization process. The trends observed in kinetic and thermodynamic parameters of decolourization are essentially manifestations of the dominating mechanism of the decolorization of the textile dye (or nature of prevalent chemical reaction in the system), viz. either molecular reaction due to enzyme or radical reaction due to transient cavitation. The activation energy for sonochemical protocol is negative, which indicates instantaneity of the radical reactions. The frequency factor is also low, which is attributed to high instability of radicals. For enzymatic and sono-enzymatic protocols, activation energy is positive with higher frequency factor. Enthalpy change for sonochemical protocol is negative, while that for enzymatic and sono-enzymatic protocols is positive. The net entropy change for sonochemical protocol is more negative than enzymatic or sono-enzymatic protocol due to differences in prevalent chemical mechanism of dye decolorization. Due to inverse variations of frequency factor and activation energy, marginal rise in reaction kinetics is seen for sono-enzymatic protocol, as compared to enzymatic treatment alone. Due to inverse variations of enthalpy and entropy change, net Gibbs energy change in all experimental protocols shows little variation indicating synergism of the mechanism of ultrasound and enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.