Abstract

A common observation in recordings of neuronal activity from the cerebral cortex is that populations of neurons show patterns of synchronized oscillatory activity. However, it has been suggested that neuronal synchronization can, in certain pathological conditions, become excessive and possibly have a pathogenic role. In particular, aberrant oscillatory activation patterns have been implicated in conditions involving cortical dysfunction. We here review the mechanisms thought to be involved in the generation of cortical oscillations and discuss their relevance in relation to a recent finding indicating that high-frequency oscillations in the cerebral cortex have an important role in the generation of levodopa-induced dyskinesia. On the basis of these insights, it is suggested that the identification of physiological changes associated with symptoms of disease is a particularly important first step toward a more rapid development of novel treatment strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.