Abstract

We use large-scale molecular dynamics simulations to investigate the mechanisms responsible for plastic deformation in metal–organic framework-5 (MOF-5). Simulations of uniaxial compression along [001], [101], and [111] directions reveal that structural collapse of {001} planes is responsible for irreversible deformation. The process involves slip along either one of the two ⟨100⟩ directions on the collapsing plane; this local shear process is due to the flexibility of the connection between of Zn–O clusters and 1,4-benzenedicarboxylate ligands. Thus, the collapse is driven both by compressive and shear stresses, and this fact explains the anisotropy in the mechanical response of this cubic crystal. The development of shear-collapse bands follows a nucleation and growth process with nuclei elongated along the slip direction and their subsequent growth in the directions normal to the slip and at much slower rates. This process is reminiscent of the glide of screw dislocations. Compression along the [101] a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.