Abstract

The origin of the astonishing properties of recently discovered ultrastable nanoglasses is presently not well understood. Nanoglasses appear to exhibit density variations not common in bulk glasses and differ significantly in thermal, magnetic, biocompatible, and mechanic properties from the bulk materials of the same composition. Here, we investigate a generic model system that permits modeling of both the physical vapor deposition process (PVD) of the nanoparticles and their consolidation into a nanoglass. We performed molecular dynamics simulations to investigate the PVD process generating nanometer-sized noncrystalline clusters and the formation of the PVD-nanoglass when these nanoclusters are consolidated. In agreement with the experiments, we find that the resulting PVD-nanoglass consists of two structural components: noncrystalline nanometer-sized cores and interfacial regions that are formed during the consolidation process. The interfacial regions were found to have an atomic structure and an internal energy that differ from the structure and internal energy of the corresponding melt-quenched glass. The resulting material represents a noncrystalline state that differs from a bulk glass with the same chemical composition and a glass obtained from nanoparticles derived from the bulk glass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.