Abstract
ObjectivesThis study sought to determine the characteristics of human LDVF, particularly as it contrasts with short-duration VF (SDVF), and evaluate the role of Purkinje fibers in its maintenance. BackgroundThe electrophysiological mechanisms of long-duration ventricular fibrillation (LDVF) have not been studied in the human heart. MethodsVF was induced in 12 human Langendorff hearts, and the hearts were examined from initiation to LDVF (10 min). Endocardial, epicardial, and transmural plunge needle mapping were performed on the hearts. Simulated LDVF was studied in canine hearts to determine the potential role of Purkinje fiber automaticity. ResultsThe mean age at transplant was 48 ± 20 years, and the mean ejection fraction was <20%. The mean cycle length of local activation times on the endocardium was 252 ± 66 ms in SDVF and 441 ± 80 ms in LDVF (p = 0.0002). On the endocardium and the epicardium in LDVF, cycle length was 441 ± 80 ms and 590 ± 88 ms, respectively (p = 0.0002). No endocardial to epicardial activation frequency gradient was seen in SDVF. Simultaneous transmural needle activation was most common in SDVF, whereas endocardial to epicardial activation was most common in LDVF (47.7% and 38.8% of activations, respectively [p = 0.031]). Re-entry was less common in LDVF, and over time, wave break (i.e., nontransmural propagation of wave fronts) developed. Isochronal maps of the left ventricular endocardium in LDVF identified Purkinje potentials as preceding and predominating endocardial activations. In explanted canine heart preparations, rapid pacing led to spontaneous Purkinje fiber activity that was dependent on pacing rate and duration. ConclusionsLDVF in human hearts is characterized by focal endocardial activity with mid-myocardial wave break and not by re-entry. This arrhythmia is modulated by rapid activations in early VF that lead to spontaneous Purkinje fiber activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.