Abstract

Our previous study showed that tea polyphenols inhibited MAP kinase and AP-1 activities in mouse epidermal JB6 cells and the corresponding H-ras-transformed cell line 30.7b Ras 12. The present study investigated the mechanisms of this inhibition. The cells were incubated with (-)-epigallocatechin-3-gallate (EGCG) or theaflavin-3,3'-digallate (TFdiG) (20 mM) for different times, and the cell lysate was analyzed by immunoblotting. EGCG treatment decreased the levels of phospho-Erk1/2 and -MEK1/2 time-dependently (by 60% at 60 min). TFdiG lowered their levels by 38%-50% at 15 min. TFdiG effectively decreased total Raf-1 protein levels, most likely through lysosomal degradation. EGCG did not affect protein levels or the activity of Raf-1 significantly but decreased its association with MEK1 as determined by co-immunoprecipitation. In addition, EGCG and TFdiG (10 mM) inhibited the phosphorylation of Elk-1 by isolated phospho-Erk1/2 in vitro. This inhibition of Erk1/2 activity is Elk-1 concentration-dependent and ATP concentration-independent, which suggests that EGCG and TFdiG interfere with the binding of the protein substrate to the kinase. The presently demonstrated specific mechanisms of inhibition of MAP kinases by EGCG and TFdiG may help us to understand the effects of tea consumption on cancer, inflammatory diseases, and cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.