Abstract

The addition of all-trans retinoic acid (ATRA) in combination with basic fibroblast growth factor (bFGF) to human fibroblasts results in a synergistic induction of tissue inhibitor of metalloproteinases-1 (TIMP-1) protein production. The synergistic stimulation of TIMP-1 protein by ATRA and bFGF increased across 72 h. An incubation of 10 min to 12 h with bFGF alone followed by ATRA gave a similar synergistic induction of TIMP-1 protein to that seen with both agents together. Treatment of cells with ATRA first followed by bFGF was ineffective. Expression of RARbeta mRNA was induced by ATRA alone, but not further induced by ATRA and bFGF; expression of RARgamma mRNA was induced by both ATRA or bFGF alone, and further induced by both reagents together; expression of RXRgamma was repressed by ATRA alone, but not by ATRA in combination with bFGF. Steady-state levels of TIMP-1 mRNA were induced 14 to 40-fold above control by ATRA and bFGF. Treatment with ATRA and bFGF did not alter the stability of TIMP-1 mRNA. The induction of TIMP-1 mRNA by ATRA and bFGF was greatly diminished by cycloheximide and therefore required new protein synthesis. The tyrosine kinase inhibitor genistein caused a dose-dependent inhibition of TIMP-1 protein induction by ATRA and bFGF. A MEK1 inhibitor (PD98059) inhibited both basal and induced levels of TIMP-1. At high concentrations, p38 MAP kinase inhibitors further enhanced the synergistic stimulation of TIMP-1 protein by ATRA and bFGF, but at these concentrations, p42/44 MAP kinase was strongly activated. These data begin to elucidate the mechanisms by which TIMP-1 gene expression can be upregulated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.