Abstract

The competition between cells integration and bacterial colonization determines the fate of implantations. To reveal the effects of clinical implant topographies on osteoblast differentiation and bacterial biofilm formation, a series of micron/submicron/nano-hierarchical structures were created at pure titanium surfaces (Ti-I, Ti-II, Ti-III). It was found that the hierarchical structures promoted MC3T3-E1 cell differentiation through contact guidance and Ti-II processed the best osteogenic ability. Undesirably, hierarchical surfaces further accelerated the biofilm formation due to submicron structures with low interaction. To reduce the risk of bacterial infections, hierarchical structures were prepared on the antibacterial Cu-bearing titanium alloy surfaces (TiCu-I, TiCu-II, TiCu-III). Hierarchical topographies not only endowed TiCu surfaces with antibacterial trapping characteristics due to CuO doped in the outermost oxides layer but also shifted the corrosion behavior of TiCu alloy into activation-passivation, increasing the Cu-ion release rate and further promoting the osteogenic differentiation. TiCu-III possessed excellent antibacterial trapping ability and optimal osteogenic action. Finally, in the osteomyelitis-modeled mice, hierarchical topographies aggravated the bacterial infection around Ti implants, which entirely lost the osseointegration, while all of the TiCu surfaces significantly inhibited the infection and accelerated the formation of new bone tunnels around the implants. In vivo studies successfully confirmed the tuning mechanism of hierarchical topographies on the biological responses of bacteria and cells to the Ti and TiCu alloys, which would pave the way to develop novel biofunctionalized metal implants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.