Abstract

Recent studies demonstrated that methamphetamine (METH) produces intracellular bodies which are reminiscent of those occurring during degenerative disorders. In vivo studies demonstrate the occurrence of these morphological alterations both in the dopamine (DA) neurons of the substantia nigra and striatal cells. These consist of neuronal bodies staining for a variety of antigens belonging to the ubiquitin-proteasome pathway. The formation of these intracellular bodies both in the substantia nigra and PC12 cells depends on the presence of endogenous DA. In the present study, we analyze the mechanisms which lead to METH-induced intracellular bodies within non-dopaminergic striatal neurons. We found that METH is no longer able to produce inclusions in vivo, in striatal cells, when striatal DA is lost. Similarly, in vitro, in primary striatal cell cultures which do not possess DA, METH administration does not produce inclusions. On the other hand, administration of DA to striatal cell cultures produces neuronal inclusions and cell death, which are both related to the inhibition of the ubiquitin-proteasome system and activation of specific-DA receptors. In line with this, we produced subcellular alterations by administering dopamine agonists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.