Abstract
This experiment was conducted to investigate the effects and mechanism of selenium (Se) on antioxidant and immune function of bovine mammary epithelial cells (BMEC) damaged by nitric oxide (NO). The third-generation BMEC was randomly divided into eight treatments with six replicates. The BMEC in the control group was cultured in the medium without Se and diethylenetriamine/NO (DETA/NO) for 30h. For the DETA/NO group and Se protection group BMEC were exposed to different concentrations of Se (0, 10, 20, 50, 100, 150, and 200nmol/L) for 24h, followed by treatment with DETA/NO (1000μmol/L) for 6h. Compared with the control group, DETA/NO decreased proliferation rate and activity of thioredoxin reductase (TrxR; P < 0.05). Additionally, DETA/NO decreased the gene expression of both nuclear factor-E2-related factor 2 (Nrf2) and TrxR, as well as the protein expression level of TrxR. However, the activity, and expression levels of inducible nitric oxide synthase (iNOS), as well as the concentration and gene expression level of interleukin-1β (IL-1β) and the concentration of NO significantly increased (P < 0.05). The gene expression levels of indexes related to the mitogen-activated protein kinase (MAPK) signaling pathway showed similar changes. Treatment of BMEC with Se significantly reversed DETA/NO-induced changes in a linear or quadratic dose-dependent manner (P < 0.05), with greatest benefit at 50nmol/L. These data suggests that Se improves the antioxidant function of BMEC, and protects cells from DETA/NO-induced oxidative damage, primarily by enhancing the activity of TrxR and decreasing the concentration of NO through modulation of Nrf2 and MAPK signaling pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.