Abstract
With the increasing demand for lithium resources and the enhancement of global environmental awareness, how to efficiently and environmentally develop clay-type lithium resources is of great strategic significance for future development. Clay-type lithium slag (LS) is a byproduct resulting from the extraction of lithium from clay-type lithium ores. Its primary chemical constituents include SiO2 and Al2O3, and it exhibits potential pozzolanic properties. Clay-type lithium ore is of low grade, so a large amount of clay-type LS is produced during its production. In this study, calcined clay-type LS, limestone powder (LP), and cement clinker were used as the main raw materials to prepare low-carbon LC3 cementitious materials. The study focused on the effect of clay-type LS and LP on the new mixing properties, mechanical properties, hydration kinetics, and microstructure formation and transformation of the cementitious materials. The findings revealed that incorporating clay-type LS and LP significantly raised the standard consistency water demand of cement and reduced the setting time of the binding material. While clay-type LS and LP initially weakened the mechanical performance of the cement mortar, it enhanced these properties in the later stages. The compressive strength of LC-10 and LC-20 at 180 days exceeded that of the reference by 3.7% and 1.1%, respectively. In addition, the number of micropores between 3 and 20 nm in LC3 cement increased significantly. It showed that the addition of clay-type LS and LP could optimize the pore structure to some extent. According to research, the optimal content of clay-type LS and LP should not exceed 30%. This method not only consumes the solid waste of clay-type LS, but also facilitates the green and low-carbon transformation of the cement industry.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have