Abstract
Aiming at the low pollutant removal efficiency of constructed wetlands (CWs) at low temperature in winter, three laboratory-scale vertical-flow CWs, namely unplanted CWs, ordinary CWs, and internal-electrolysis CWs, were used to investigate the nitrogen removal efficiency of municipal secondary effluent when the water temperature was 3-12℃. Moreover, the mechanism of enhanced denitrification of the new wetland was revealed through analysis of the microbial community diversity and community structure. The results showed that the internal-electrolysis CWs could make better use of the carbon sources in the municipal secondary effluent and had a higher removal rate. The effluent TN concentration was maintained at about (9±0.29) mg·L-1. The average TN removal rate was 42.27%, which was 17.91% and 17.33% higher than those of the unplanted CWs and ordinary CWs, respectively. The microbial activity was detected using fluorescein diacetate (FDA), and the result revealed that the microbial activity of the internal-electrolysis CWs could reach 0.224 mg·g-1, which was 2.6 times and 3.4 times of that of the unplanted CWs and ordinary CWs, respectively. The microbial denitrification intensity of the internal-electrolysis CWs was 2.8 times and 3.3 times of that of the unplanted and ordinary CWs, respectively. The results of high-throughput sequencing showed that the microbial community diversity of the internal electrolysis CWs was higher than those of the unplanted and ordinary CWs. Denitrification microorganisms were detected, mainly Dechloromonas, Rhizobium, Hyphomicrobium, and Rhodobacter, as well as Thiobacillus, which is an autotrophic denitrifying bacterium. There were obvious advantages in the total amount of denitrifying microorganisms in the internal-electrolysis CWs, as the denitrification microorganisms accounted for 7.13% of the total microbial biomass, which was 3.8 times and 8.7 times of that of the unplanted CWs and ordinary CWs, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.