Abstract

Zinc is an essential transition metal ion that plays as a structural, functional (catalytic), and a signaling molecule regulating cellular function. Unbalanced levels of zinc in cells can result in various pathological conditions. In the current work, all-atom molecular dynamics simulations were used to study the structure-function correlation between different YiiP states embedded in a lipid bilayer. This study enabled us to develop a hypothesis on the zinc efflux mechanism of YiiP. We have created six different models of YiiP representing the stages of the ion-transport process. We found that zinc ion plays a crucial role in restraining the transmembrane domains (TMDs) of the protein. In addition, H153, located in the TMD, has been proposed to guide the zinc ion toward the ZnA site of the YiiP transporter. Understanding the molecular-level Zn2+-transport process sheds light on the strategies affecting intracellular transition-metal ion concentrations in order to treat diseases like diabetes and cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.