Abstract

An experiment conducted in a 2000-ton uniaxial split-sphere apparatus (USSA-2000) utilizes large sample volume and a substantial temperature gradient to synthesize intergrowths of the olivine and spinel polymorphs of Co2SiO4. The olivine starting material consists of a finegrained fraction (<20μm) which records the stable polymorphs along the length of the sample plus large olivine grains (100–500 μm) which help decipher the mechanism of the phase transformation. At conditions near equilibrium, the olivine-spinel transformation in the large grains occurs by inward growth of a few large single crystals of spinel nucleated on the surfaces of the olivine. The overall rate of transformation is governed by the mobility of the interphase boundary, whose morphology is crystallographically controlled by the spinel. No renucleation of spinel is observed in the host olivine crystal, even in the region immediately adjacent to the olivine/spinel interface; analysis of this region with transmission electron microscopy reveals an extremely high density of dislocations induced by plastic flow accommodating the volume change associated with the phase transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.