Abstract

High-current pulsed electron beam (HCPEB) technique was applied to irradiate the samples of polycrystalline pure nickel. Microstructures of the irradiated surface and sub-surface were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the surface layer melted, and 2 μm depth remelted layer was formed on the top surface. Superfast solidification of melted layer results in the formation of nano-structure of 80 nm grain size in the remelted layer. In the sub-surface regions, the structures of dislocation walls and sub- dislocation walls in it with band shape were induced by severe plastic deformation, which become the dominant structures 5—15 μm below the irradiated surface. Those defect structures crossing with each other results in grain refinement, and nanocrystal grains about 10 nm in size were produced in the sub-surface layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.