Abstract

CdSe and CdSe@CdS semiconductor nanocrystals have been synthesized in aqueous solutions, using sodium citrate as a stabilizer. Although initially these quantum dots display photoluminescence with very low quantum yields, upon prolonged illumination with visible light, enhancements up to 5000% have been measured. This leads to aqueous quantum dots with high luminescence, which can have important implications in biological and other applications. A distinct correlation between the photocorrosion process and the photoactivation process is observed. The primary reason for luminescence enhancement is considered to be the smoothing of the CdSe core surface. Importantly, even stronger activation was observed in silica- and CdS-coated nanocolloids where the CdSe core was expected to be shielded from photocorrosion. Preferential adsorption of oxygen molecules in the porous silicate shell accelerates the photocorrosion process. In CdS-coated particles, incomplete coating of the original particles is postulated, whi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.