Abstract

When quantum flavor Hall insulator phases of itinerant fermions are disordered by strong quantum fluctuations, the condensation of skyrmion textures of order parameter fields can lead to superconductivity. In this work, we address the mechanism of skyrmion condensation by considering the scattering between (2+1)-dimensional, Weyl fermions and hedgehog type tunneling configurations of order parameters that violate the skyrmion-number conservation law. We show the quantized, flavor Hall conductivity ($\sigma^f_{xy}$) controls the degeneracy of topologically protected, fermion zero-modes, localized on hedgehogs, and the overlap between zero-mode eigenfunctions or 't Hooft vertex determines the nature of pairing. We demonstrate the quantum-disordered, flavor Hall insulators with $\sigma^f_{xy}= 2 N$ lead to different types of charge $2 N e^-$ superconductivity. Some implications for the competition among flavor Hall insulators, the charge $2e^-$ paired states in BCS and pair-density-wave channels, and the composite, charge $4e^-$ superconductors for twisted bilayer graphene are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.