Abstract

The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.

Highlights

  • Asthma is one of the most common chronic inflammatory diseases, affecting millions of people worldwide

  • We summarize the recent advances of the literature, expound on some of our views on the regulated expression of interferon type I and their receptor in association with RV infection in asthmatics and the immunosuppression induced by the virus

  • In our study we demonstrated that IL-17A is the target of the RV as the host immune system, during rhinovirus infection, induced IL-17A which inhibits RV infection by downregulating low-density lipoprotein receptor (LDL-R) expression on epithelial cells

Read more

Summary

Mechanism of Rhinovirus Immunity and Asthma

Reviewed by: Wan-Lin Lo, University of Utah, United States Marc Hershenson, University of Michigan, United States Yiran Li, University of Michigan, United States, in collaboration with reviewer MH. Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-b. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus

INTRODUCTION
HUMAN RHINOVIRUS AND ITS INTRACELLULAR SIGNALING
INTERFERON TYPE I AND ITS SIGNALING
CELLULAR IMMUNITY TO RV INFECTION IN ASTHMA
Innate Immune Response in Asthma
Adaptive Immune Response in Asthma
Interferon Type I
RV Influences the Release of Various Cytokines
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.