Abstract

N4-Hydroxy-dCMP (N4-OH-dCMP), N4-methoxy-dCMP (N4-OMe-dCMP), and their 5-fluoro congeners (syntheses of which are described) were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N4-OH-dCMP was not a substrate (no dihydrofolate produced; no tritium released with 5-3H-labeled molecule), and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based, with arrest of a step posterior to addition of cofactor and blocking abstraction of the C(5) hydrogen. Ki values for N4-OH-dCMP and its 5-fluoro analogue were in the range 10(-7) - 10(-8) M, 2-3 orders of magnitude higher for the corresponding N4-OMe analogues. The 5-methyl analogue of N4-OH-dCMP was 10(4)-fold less potent, pointing to the anti rotamer of the imino form of exocyclic N4-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N4-OH-dCMP, suggesting interaction of both N4-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N4-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.