Abstract

Curcumin, a main component of Curcuma Longa Linn, is a plant polyphenol used as an immune-enhancer in the Indian system of traditional medicine. However, its underlying mechanism of immune-protection remains unknown. The present study is designed to delineate the role of curcumin in deltamethrin (DLM)-induced thymocyte apoptosis and altered immune functions. In silico studies revealed that curcumin has a strong binding affinity toward CD4 and CD8 receptors. DLM (25 µM) induces thymocytes apoptosis through oxidative stress and caspase-dependent pathways. Various concentrations of curcumin (1, 10 and 50 µg/ml), when added along with DLM, caused a concentration- and time-related amelioration in apoptogenic signaling pathways induced by DLM. Inhibition of DLM-induced reactive oxygen species production, replenishment of glutathione and suppression of caspase activities by curcumin may thus be responsible for the suppression of downstream cascade of events, i.e. apoptosis, phenotypic changes and altered cytokine release. Thus, this study clearly demonstrates that the mechanism of immunoprotection of curcumin in DLM-induced thymic apoptosis includes inhibition of oxidative stress and caspase-dependent pathways underlying apoptosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.