Abstract
The effect of glucocorticoids on the regulation of glucocorticoid receptor mRNA was studied in two different cell lines, human IM-9 lymphocytes and rat pancreatic acinar AR42J cells. Using a glucocorticoid receptor cDNA probe, glucocorticoid receptor mRNA was examined by Northern blot hybridization and quantitated by slot-blot hybridization. In IM-9 and AR42J cells, dexamethasone decreased steady-state glucocorticoid receptor mRNA levels to approximately 50% of control. This decrease occurred with a one-half time of 3 h for IM-9 cells and 6 h for AR42J cells. Dexamethasone was the most potent steroid tested with a one-half maximal effect occurring at 10 nM and a maximal effect occurring at 100 nM. Glucocorticoid receptor mRNA half-life and gene transcription were then studied to determine the mechanism of decreased mRNA levels. The glucocorticoid mRNA half-life was approximately 120 min in IM-9 cells and 240 min in AR42J cells; these rates were not affected by dexamethasone treatment. In contrast, the rate of glucocorticoid gene transcription as measured by run-on assays in IM-9 cells was decreased to 50 +/- 6% of control by dexamethasone. These results indicate therefore that glucocorticoids regulate glucocorticoid receptor mRNA levels by influencing gene transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.