Abstract

The development of fast and reliable gas sensors is a pressing and growing problem for environmental monitoring due to the presence of pollutants in the atmosphere. Among all gases, particular attention is devoted to NO, which can cause serious health problems. WO3 nanorods represent promising candidates for this purpose due to their high electrical stability and low cost of production. Here, the hydrothermal synthesis of WO3 nanorods is reported, in addition to the realization of a chemo-resistive NO sensor. NO-sensing tests were performed at different temperatures (250–400 °C) and under different gas concentrations (250–2500 ppm), and NO response and recovery curves were also modeled by using the Langmuir adsorption theory by highlighting the NO-sensing mechanism of the WO3 nanorods. An interaction occurred at the surface between NO and the adsorbed oxygen ions, thus clarifying the NO-reducing behavior. The fast response and recovery times open the route for the development of fast NO sensors based on WO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.