Abstract

Dearomatizing benzoyl-coenzyme A reductases (BCR) from facultatively anaerobic bacteria are key enzymes in the anaerobic degradation of aromatic compounds. They catalyze the ATP-dependent reduction of benzoyl-CoA (BCoA) to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA). A Birch reduction mechanism involving alternate electron transfer and protonation steps has been proposed for BCR. In this work we reacted BCoA in H2O and D2O, and d5-BCoA in H2O with BCR and the second enzyme of the pathway, dienoyl-CoA hydratase (DCH). The 1,4 hydration product formed from the dienoyl-CoA, 6-hydroxycyclohex-1-ene-1-carbonyl-CoA, was analyzed by several NMR techniques. The results obtained indicate that BCR stereoselectively forms the trans-dienoyl-CoA product, and DCH stereoselectively catalyzes a trans-1,4 water addition. Moreover, unexpected proton exchanges at C-2 and C-6 were observed. They indicate that a free radical intermediate with an unusual low pKa is formed during BCR catalysis. This finding provides evidence for the proposed Birch reduction mechanism of BCR and is in agreement with the established radical mechanism of homologous alpha-hydroxyacyl-CoA dehydratases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.