Abstract

In order to assess the role of L-type voltage-gated calcium channels in electrical stimulation-mediated neuroprotection in vivo, we assessed survival of primary auditory afferents (spiral ganglion cells) in systemically deafened guinea pigs following chronic electrical stimulation with or without intracochlear infusion of verapamil, an L-type voltage-gated calcium channel antagonist. Continuous intracochlear drug delivery (0.5 μl/h) was provided using a delivery system developed previously in our laboratory using Alzet ® mini-osmotic pumps. In the absence of chronic stimulation, spiral ganglion cell survival was relatively symmetric in animals treated unilaterally with either artificial perilymph or verapamil (50 μg/ml). In the presence of unilateral chronic electrical stimulation, spiral ganglion cell survival was significantly greater in stimulated, perilymph-infused ears, relative to the contralateral ear. In contrast, spiral ganglion cell survival was bilaterally symmetric in chronically stimulated, verapamil-infused animals. The difference in symmetry of spiral ganglion cell survival between the two groups was statistically significant. In vitro, passive depolarization has been demonstrated to enhance survival of cultured neurons via activation of L-type calcium channels. The results of this study indicate that, as suggested by in vitro depolarization models, in vivo electrical stimulation-mediated neuroprotection requires the activation of L-type voltage-gated calcium channels. Chronic electrical stimulation of the deaf ear is an ideal preparation for further studies in which to extrapolate findings from in vitro depolarization models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.