Abstract

ODS steels based on yttrium oxide have been suggested as potential fusion reactor wall materials due to their observed radiation resistance properties. Presumably this radiation resistance can be related to the interaction of the particle with vacancies, self-interstitial atoms (SIAs) and other radiation damage debris. Density functional theory has been used to investigate this at the atomic scale. Four distinct interfaces, some based on HRTEM observations, between iron and yttrium oxide were investigated. It is been shown that the Y2O3–Fe interface acts as a strong trap with long-range attraction for both interstitial and vacancy defects, allowing recombination without altering the interface structure. The catalytic elimination of defects without change to the microstructure explains the improved behaviour of ODS steels with respect to radiation creep and swelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.