Abstract

We present a possible mechanism for the saturation of the velocity of photoinjected charge carriers in pure organic crystals, the analysis having been motivated by observations in pentacene. The mechanism is based on the strong wave vector dependence of the damping coefficient appearing in the appropriate effective mass equation. Our primary goal is to explore this mechanism in general terms rather than to apply it to a specific system such as pentacene. Our analysis is based on a Fokker-Planck equation treatment. We indicate how the damping coeffcient is related to relaxation times in usual Boltzmann equations and how it can be computed from Fermi golden rule transition rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.