Abstract

AbstractThe decomposition and reduction of ferrocene, an important precursor for iron chemical vapor deposition and catalyst for nanotube synthesis, is investigated in the gas‐phase. Reactive intermediates are detected to understand the underlying chemistry by using a microreactor coupled to a synchrotron light source. Utilizing soft photoionization coupled with photoelectron‐photoion coincidence detection enables us to characterize exclusive intermediates isomer‐selectively. A reaction mechanism for the ferrocene decomposition is proposed, which proceeds as a two‐step process. Initially, the molecule decomposes in a homogeneous surface reaction at temperatures <900 K, leading to products such as cyclopentadiene and cyclopentadienyl radicals that are immediately released to the gas‐phase. At higher temperatures, ferrocene rapidly decomposes in the gas‐phase, losing two cyclopentadienyl radicals in conjunction with iron. The addition of hydrogen to the reaction mixture reduces the decomposition temperature, and changes the branching ratio of the products. This change is mainly attributed to the H‐addition of cyclopentadienyl radicals on the surface, which leads to a release of cyclopentadiene into the gas‐phase. On the surface, ligand fragments may also undergo a series of catalytic H‐losses leading most probably to a high carbon content in the film. Finally, Arrhenius parameters for both global reactions are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.