Abstract

Ketoprofen, 2-(3-benzoylphenyl)-propionic acid, a widely used non-steroidal anti-inflammatory drug, is considered as an important water pollutant. Kinetics and mechanism of its photolytic transformation in aqueous solutions was studied experimentally and partial reaction steps were modelled by means of quantum chemistry methods. While the rate of ketoprofen photolysis was not significantly affected by its acid-base equilibrium, a marked influence of pH on the subsequent degradation reactions was observed. At pH 1.3, two oxygenated primary products were identified, that underwent fast photolysis. Deprotonated form of ketoprofen was transformed preferentially to ethylbenzophenone and further degradation proceeded substantially slower. Oxygen participated on photolytic processes both as a reactant and the triplet state quencher. The active involvement of water molecules in the reaction mechanism was investigated by comparative experiments in acetonitrile. The phototransformation mechanism proposed based on the experimental data corresponded well with the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.